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1. Introduction
Black hole–neutron star (BHNS) mergers produce gravitational
waves [1] and are a possible site for r-process nucleosynthesis [2–4],
ejecting∼ 0 – 0.2 M� depending on the black hole mass and spin [5–
7]. Neutrinos emitted from the hot accretion disk can impact the nu-
cleosynthesis [8]. We investigate r-process nucleosynthesis in BHNS
merger ejecta with different levels of neutrino irradiation.

2. BHNS merger and ejecta simulation
The BHNS merger simulation was carried out with the fully rela-
tivistic code SpEC [9] using a neutrino leakage scheme [6, 10] and
the LS220 equation of state (EOS) [11]. Fig. 1 shows the disrupted
neutron star at ∼5 ms after merger. We continue to evolve the ejecta
with the Newtonian smoothed particle hydrodynamics (SPH) code
StarSmasher [12, 13]. Fig. 2 shows a snapshot of the SPH evolution.

Figure 1: Volume rendering of the BHNS merger. From [6].
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Figure 2: Snapshot of the SPH evolution of the ejecta. From [14].

3. Nucleosynthesis
For the nucleosynthesis calculation, we use SkyNet [15] to post-
process each unbound SPH trajectory starting from nuclear statis-
tical equilibrium (NSE). Assuming homologous expansion, we ex-
tend the density histories as ρ ∝ t–3. We use different constant neu-
trino luminosities Lνe and Lν̄e =1.5 Lνe with 〈Eνe〉, 〈Eν̄e〉 = 12, 15 MeV.
We evolve 7843 nuclear species and 110,000 reactions with SkyNet,
using rates from REACLIB [16], symmetric fission rates from [17,
18], weak rates from [19–21], and neutrino capture rates from [22].
SkyNet includes a multi-species, non-degenerate ideal gas EOS [15,
23]. Fig. 3 shows a snapshot of an example SkyNet evolution.

Figure 3: Snapshot of nucleosynthesis evolution with SkyNet. From [15].

4. Results
All trajectories robustly produce the full r-process (2nd and 3rd
peaks) and match the observed solar r-process abundances [24]
fairly well. The final abundances are identical for different neutron
star masses, black hole masses, and black hole spins. Neutrinos have
no effect on abundances above A∼ 90, but an increased neutrino lu-
minosity significantly enhances the first peak (A ∼ 80). Fig. 4 shows
the final abundances for different neutrino luminosities.

25 50 75 100 125 150 175 200 225 250

10−7

10−6

10−5

10−4

10−3

Mass number

R
el

at
iv

e
ab

un
da

nc
e

Lνe,52 = 0
Lνe,52 = 0.2
Lνe,52 = 1

Lνe,52 = 5
Lνe,52 = 25

Observed solar

Figure 4: Final abundances for different neutrino luminosities. From [14].

5. Novel first peak production mechanism
In binary neutron star mergers, neutrinos push the Ye distribution
above 0.25, which introduces an incomplete r-process that enhances
the first peak and reduces the 2nd and 3rd [e.g. 25–27]. But the
BHNS ejecta expands so quickly that even Lνe=2.5×1053 erg s–1 does
not push Ye past 0.25 (c.f. Fig. 5) and we still obtain the full r-process.
Instead, neutrinos convert some neutrons to protons, which quickly
form alpha particles and then 12C. Neutrons capture on these addi-
tional low-mass seed nuclei to enhance the first peak (seed nuclei
from NSE have A & 80). Neutrons are exhausted before the low-
mass seed nuclei can be processed past the first peak.
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Figure 5: Ye distribution for different neutrino luminosities. From [14].

6. Conclusion
We have mapped the ejecta from a fully relativistic BHNS merger
simulation into a Newtonian SPH code and run nucleosynthesis
with SkyNet in the resulting trajectories with different neutrino lu-
minosities. We find that the full r-process is produced in all cases
and unaffected by neutrinos. But the first peak is significantly en-
hanced with increasing neutrino irradiation due to a new first peak
production mechanism in which neutrinos produce additional low-
mass seed nuclei but do not affect the abundances above A ∼ 90.
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